Assessing energy efficiency policies with multiple market and behavioral frictions

PhD Defense - Lucas Vivier

Centre International de Recherche sur l'Environnement et le Développement (CIRED)

Ecole Nationale des Ponts et Chaussées (ENPC)

September 20th, 2024

PhD Direction:

Louis-Gaëtan Giraudet (main)

Laurent Lamy

Reviewers:

Dorothée Charlier

Joachim Schleich

Jury members:

Peter Berill

Chiara Delmastro Ken Gillingham

Space heating residential sector

- 20% of total EU energy consumption, with a large share of fossil fuels (Eurostat) → 20% of GHG emission in all EU (Eurostat)
- Objective to meet carbon neutrality by 2050
- Current dynamics are not consistent with climate targets
 - Slow turnover: 75% of the existing EU building stock is expected to remain in 2050

How to accelerate emission reduction in the <u>existing</u> residential space heating sector?

Mitigation channels in the residential stock

1 Decarbonizing fuel

Energy renovation

- 2 Switching to low carbon heating system (heat pumps)
- 3 Home insulation
- 4 Sufficiency measures

Energy renovation policy context

Technical studies

Energy renovation cost- efficient measures to reduce GHG emission.

e.g. Zeyen et al. (2020), Hummel et al. (2023)

Policies

In France, +7 billion €/year across different policies: subsidies, white certificate programs, zero-interest loan, rental ban...

Renovation Wave in the EU: "doubling energy renovation rate by 2030".

Realization

In France, 300k energy renovation instead of 700k expected.

Economic evaluation

"[...] the average rate of return is approximately **–7.8%** annually"

Fowlie et al. (2018)

"[...] the programs reduced total surplus"

Allcott and Greenstone (2024)

Research questions

New insights into an old question: **How to reconcile optimistic technical assessment with skeptical policy evaluation results?**

Objective:

- → Develop an investment model including key investment frictions at the source of the gap
- → Carefully disentangle and quantify the costs and benefits of energy renovation policies

Method: microsimulation framework

Key ingredient: investment frictions

Energy renovation investment

Social optimum by technical models

Market barriers:

- Overestimation of energy saving
- Unobserved or hidden value (non-energy value)

Market failures:

- GHG externalities
- Health externalities
- Landlord tenant dilemma
- · Collective decision-making
- Credit rationing

Behavioral "anomalies":

- Undervaluation of future benefits
- Status-quo bias

Current investment level

Disentangling and quantifying cost and benefits

PhD Overview

Energy efficiency policy in an n-th best world: Assessing the implementation gap

1

L. Vivier, and L.-G Giraudet. *Energy efficiency policy in an n-th best world: Assessing the implementation gap.* Working paper

Welfare impacts if frictions were corrected

Welfare impacts if frictions were corrected

Welfare impacts if frictions were corrected

Assessing policy packages in France

Assessing the Implementation Gap

Contributions

- Highlight the importance of unobserved value in energy renovation decision and welfare assessment
- Show that GHG externality is dominated by health, rental and multi-family frictions in the ranking of justifications for energy renovation policies
- Estimate that Baseline package in France close about half of the Energy Efficiency Gap

Meeting climate target with realistic demand-side policies in the residential sector in the EU-27

L. Vivier and A. Mastrucci. *Meeting climate target with realistic demand-side policies in the residential sector in the EU-27.* Submitted to Nature Climate Change Preliminary report received the Lewin Award part of the YSSP at IIASA

European residential model

Bottom-up technical model of residential sector MESSAGEix-Buildings

- Detailed representation of the building stock
- Main data source: Building stock libraries, EUROSTAT data

Households' energy renovation decision model

Calibrated on <u>current renovation rate</u> and <u>heating system installation</u> for each EU-27 member states.

Assessing European mitigation policies

Mid Deep renovation subsidies

Carbon tax

Promoting heat pumps

Promoting home insulation

Cost-benefits decomposition:

- Cost emission
- Cost fuel
- Cost heating system
- Cost renovation
- Cost thermal comfort

\dots but home insulation alleviate energy poverty \mathbf{Z}

2. Contributions

- Build a high-resolution bottom-up model of the European residential sector that includes endogenous investment decision
- Cost-benefit analysis of 384 realistic policy packages
- Confirm need of nationally-determined policies with a carbon tax and additional subsidies for heat pumps
- Nuance the need of doubling the home insulation rate to carefully calibrated incentives for home insulation

How to allocate mitigation efforts between home insulation, fuel switch and fuel decarbonization?

C. Escribe*, **L. Vivier***, L.-G Giraudet, and P. Quirion. *How to allocate mitigation efforts between home insulation, fuel switch and fuel decarbonization? Insights from the French residential sector*. Environmental Research Letters, 2024.

^{*} Equal contribution as co-first author

Integrated demand-supply framework

→ Study the impact of subsidy design for home insulation

Ideal allocation: 36% - 20% - 45%

... but total system cost increases by 11 to 16% when accounting for realistic subsidies.

Design of subsidy for home insulation

- Couple high-resolution bottom-up models to endogenize demand-side and supply-side option
- Build an innovative framework with social planner choose subsidies (and not energy renovation directly) to account for decentralized investment decision

Banning new gas boilers as a noregret mitigation option

C. Escribe* and **L. Vivier***. *Banning new gas boilers as a no-regret mitigation option*. Revise & Resubmit in Nature Communications.

* Equal contribution as co-first author

Banning new gas boilers lead to a more efficient energy system from a whole-system perspective

Additional capacity in 2050 when the ban on gas boilers is implemented

Banning new gas boilers as a hedge against the limited availability of renewable gas supply

Main uncertainties that impair the achievement of climate targets without the ban. Sobol analysis.

Ambiguous impact on total system costs

Breakdown and distribution of additional cost when implementing the ban of gas boilers compared to the counterfactual scenario

- Highlight the **impact on the energy system** of a demand-side policy, here the ban on gas boiler
- Assess cost impact under uncertainty across large set of scenarios (approx. 12,000)
- This ban appears as a no-regret mitigation option

Conclusion

General policies takeaway

Achieving climate goals:

- Achieving carbon neutrality require ambitious policies to **promote heat pumps** alongside full decarbonization of the electricity system (Chap. 1,2,3,4).
- Adopting heat pumps **shift gas use from heating to electricity generation**, which is a more efficient use of low-carbon biogas (Chap. 4).
- While regulatory measures underperform incentive-based instruments from a simple microeconomic perspective, they are crucial for meeting carbon neutrality, especially under uncertainty (Chap. 1, 4).

Energy efficiency policies:

- CO2 externality is dominated by health, rental and multi-family frictions in the ranking of
 justification for home insulation policies (Chap. 1,2).
- Overall, for the case of France, current policies only close about half of the energy efficiency gap in space heating (Chap. 1).
- Aligning policies on frictions (landlord, multi-family, worst-performing) significantly increase cost-efficiency (Chap. 1, 2, 3).

Further work – Market Interactions

Summary of contribution

Academic contribution

- **L. Vivier,** and L.-G Giraudet. *Energy efficiency policy in an n-th best world: Assessing the implementation gap.* Working paper
- L. Vivier and A. Mastrucci. Meeting climate target with realistic demand- side policies in the residential sector in the EU-27. Submitted in Nature Climate Change.
- C. Escribe*, **L. Vivier***, L.-G Giraudet, and P. Quirion. *How to allocate mitigation efforts between home insulation, fuel switch and fuel decarbonization? Insights from the French residential sector*. Environmental Research Letters, 2024.
- C. Escribe* and **L. Vivier***. *Banning new gas boilers as a no-regret mitigation option*. Revised & Resubmit in Nature Communications.

Research report

- **L. Vivier** et L.-G. Giraudet, 2024. *Analyse socio-économique de la rénovation énergétique des logements.* Focus Conseil d'Analyse Économique.
- L.-G. Giraud et **L. Vivier**, 2022. *La difficile quantification de la place du bâtiment dans la décarbonation*. Transitions. Les nouvelles Annales des Ponts et Chaussées, Ecole des Ponts ParisTech et Presses des Ponts.
- V. Aussilloux, F. Chabrol, L.-G. Giraudet, L. Vivier, 2021.
 Quelle rentabilité économique pour les rénovations énergétiques des logements? France Stratégie, Note d'analyse, n°104

^{*}Equal contribution as co-first author

Supplementary Information

Space heating residential sector

ENERGY USE

OF SPACE HEATING

37

Source: Eurostat 2024

Literature review - Energy Efficiency Gap

Accounting model

National scale

Detailed representation of the building stock. Exogenous scenarios energy renovation diffusion.

Agent Based Model

National scale

Explicit modelling interaction of agents.

Based on psychological and social factors.

Multi-agent model

National or regional scale

Detailed description of the building stock. Heterogenous investment decision relying ad hoc decision function. Do not assess welfare impact of policy mix.

Our work: Microsimulation modelling structural model

National scale

Detailed description of the building stock.
Heterogenous investment decision and
explicit representation of market barriers
and failures. Utility consistent framework
which enable welfare assessment.

System dynamics

Multi-regional scale

Intermediate complexity. Heterogeneity can be captured though distribution of parameters. Investment barriers are represented through implicit discount rate.

Structural model

Program based

Grounded in microeconomic consumer theory. Utility consistent framework which enable welfare assessment. Usually used to assess individual energy efficiency program.

Illustration of impact of investment frictions

- We will do it dynamically
- And how to tackle this potential with policies

L. Vivier and L.-G Giraudet. *Analyse socio-économique de la rénovation énergétique des logements.* Focus CAE n° 106, 2024.

Category	Barrier	Specification	Source
Market failures	CO2 externality	€150/tCO2 in 2024, increasing to €250 in 2030 and €775 in 2050	Quinet (2019)'s official value
	Health externality	€7,500 to low-income families living in G+ dwellings	Dervaux and Rochaix (2022)'s official value
	Credit rationing	Credit denied if debt repayment exceeds 5% of household income	Dolques et al. (2022)
	Landlord-tenant dilemma	Penalty of €20,639 per rented house	Own calibration
	Free-riding in MFH	Penalty of €15,961 per MFH in the private sector	Own calibration
Behavioral anomaly	Present bias	Discount rate increasing from 3% to top 20% to 19% to bottom 20%	Stolyarova (2016)
	Status quo bias	€4,300	Stolyarova (2016)
Market barriers	Non-energy costs of renovation	Calibrated as reduced-form value distributed across households to match price elasticity of -1.	Own calibration
	Performance gap	61% performance gap and a 26% rebound effect based on short-term energy price elasticity of -0.2	Douenne (2020)
	Opportunity cost of public funds	20%	France Stratégie (2017)

Welfare impact of policy packages in France

Banning new gas boilers lead to a more efficient energy system from a whole-system perspective

Additional generation in 2050 when the ban on gas boilers is implemented

Banning new gas boilers lead to a more efficient energy system from a whole-system perspective

Additional installed capacity and generation in 2050 when the ban on gas boilers is implemented